The Periodic Patch Model for Population Dynamics with Fractional Diffusion
نویسندگان
چکیده
Fractional diffusions arise in the study of models from population dynamics. In this paper, we derive a class of integro-differential reactiondiffusion equations from simple principles. We then prove an approximation result for the first eigenvalue of linear integro-differential operators of the fractional diffusion type, and we study from that the dynamics of a population in a fragmented environment with fractional diffusion.
منابع مشابه
Nonlinear Cable equation, Fractional differential equation, Radial point interpolation method, Meshless local Petrov – Galerkin, Stability analysis
The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensio...
متن کاملVibration of FG viscoelastic nanobeams due to a periodic heat flux via fractional derivative model
In this work, the vibrations of viscoelastic functionally graded Euler–Bernoulli nanostructure beams are investigated using the fractional-order calculus. It is assumed that the functionally graded nanobeam (FGN) is due to a periodic heat flux. FGN can be considered as nonhomogenous composite structures; with continuous structural changes along the thick- ness of the nanobeam usually, it change...
متن کاملFractional Diffusion Emulates a Human Mobility Network during a Simulated Disease Outbreak
Mobility networks facilitate the growth of populations, the success of invasive species, and the spread of communicable diseases among social animals, including humans. Disease control and elimination efforts, especially during an outbreak, can be optimized by numerical modeling of disease dynamics on transport networks. This is especially true when incidence data from an emerging epidemic is s...
متن کاملPeriodic dynamical systems in unidirectional metapopulation models
In periodically varying environments, population models generate periodic dynamical systems. To understand the effects of unidirectional dispersal on local patch dynamics in fluctuating environments, dynamical systems theory is used to study the resulting periodic dynamical systems. In particular, a unidirectional dispersal linked two patch nonautonomous metapopulation model is constructed and ...
متن کاملModeling Diffusion to Thermal Wave Heat Propagation by Using Fractional Heat Conduction Constitutive Model
Based on the recently introduced fractional Taylor’s formula, a fractional heat conduction constitutive equation is formulated by expanding the single-phase lag model using the fractional Taylor’s formula. Combining with the energy balance equation, the derived fractional heat conduction equation has been shown to be capable of modeling diffusion-to-Thermal wave behavior of heat propagation by ...
متن کامل